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Abstract—1,2A method is presented for transforming 
functional requirements into system-of-subsystems function 
models.  Text from requirements and risk tools is 
transformed into simple semantic models. An ontology of 
functions, entities and problems provides structure for the 
transformation and for deriving functional models. 
Functions, operands of functions and functional agents can 
be captured. Generic hazards and vulnerabilities can be 
identified for types of functions and operands. These 
models are transformed into functional architectures of 
connected subsystems. This approach permits application of 
graph analysis and lightweight simulation to investigate the 
effects of problems and countermeasures in scenarios. We 
discuss a hazard identification tool and hybrid simulation 
tool where these methods are being applied. 
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1. INTRODUCTION 

A task of conceptual design is to perform preliminary 
analysis of the impacts of potential problems and risks on 
system performance and operations, mission goals and 
safety. Another task is to evaluate countermeasures and 
influences on countermeasure effectiveness. It is a challenge 
to accomplish these analyses early in design, with available 
functional models. It is also challenging to produce models 
that can be transformed into ones that are appropriate for 
later stage analyses. We are exploring the development of 
multi-use functional models that can be transformed into 
functional architecture models for analysis and then 
component-connection models for simulation. We present a 
method for transforming functional requirements into 
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function models.  We have developed an ontology of 
functions, entities and problems that provides structure for 
functional decomposition nodes and functional models [1]. 
The nodes of the functional decomposition tree are 
imperative sentences that are transformed into simple 
semantic models. Functions, operands of functions and 
functional agents can be captured. Generic hazards and 
vulnerabilities can be identified for types of functions and 
operands. A method is presented for transforming these 
models into functional architectures of connected 
subsystems. The functional models can support analysis of 
both problem impacts and resource use. This supports early 
analyses to predict the impacts of failures and problems in 
system designs.  

In this paper we first briefly review the model-based hazard 
analysis work that is the context for developing methods for 
transforming requirements into models. We next present an 
overview of methods and tools for transforming 
requirements and risk text into structured data objects, and 
methods for deriving system-of-subsystems models. We 
discuss the use of a parser and an ontology to achieve these 
transformations. Finally, we discuss an example case, where 
text from functional requirements, risks and 
countermeasures is transformed and included in models. 
The Models are then used to explore possible problem 
impacts by analysis and simulation, and this leads to 
redesign. 

2. MODEL-BASED HAZARD ANALYSIS 

We have been developing technology to aid early 
identification of system problems that impact performance, 
operations or safety [1]. We have automated analysis of 
transmission paths for potential to propagate system threats 
in operations, due to interactions among subsystems and 
with resources (power, thermal, data). We have developed 
an approach for automated analysis of effectiveness of 
counteractions and mitigations, including redundant 
systems, software and human operations. 

The prototype Hazard Identification Tool (HIT) helps 
engineers capture and integrate design information during 
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conceptual design, top-down from the system level, with 
emphasis on system functions and structure. Information 
about functions, performance and risk can be used in graph 
analysis and simulation to investigate hazard paths and 
sequences. Analyses of operations scenarios can support 
impact analysis for preliminary hazard analysis and hazard 
and operability analysis (HAZOP) [2].  

HIT provides vocabularies and library-based help for 
identifying and analyzing system functions, threats and 
counteractions. Usign knowledge acquisition forms, users 
can select types of components and entities, functions and 
problems from libraries. The libraries help engineers 
consider potential problems and counteractions that are 
associated with types of functions and entities. Component-
connection models of systems can be developed, using 
libraries of models of generic components or subsystems. 
These subsystem models can then be mapped to behavioral 
models in the simulation tool. 

HIT uses graph analysis of system models to help engineers 
identify and script candidate accident scenarios for 
simulation. By mapping HIT data to models in the 
simulation tool, it is possible to simulate event sequences 
during operations. The CONFIG hybrid modeling and 
simulation tool includes a library of generic component 
behavior models that is synchronized with the HIT 
component library. These lightweight abstract behavioral 
models include a broad variety of types of performance 
problems and hazards [3,4].  

For the libraries used in this project, we developed 
ontologies to help classify and describe attributes associated 
with classes of function verbs, entities, hazards, 
vulnerabilities and counteractions.  We used text parsing 
and matching results from the Reconciler tool [5] to refine 
these ontologies and map them to the space domain. We 
parsed imperative sentences and classified terms from the 
International Space Station (ISS) Reliability Block 
Diagrams (RBDs) and from the ISS Flight and System data 
books. We realized that we could reapply this method to 
analyze text from requirements tools and risk analysis tools. 
We could map information from the sentences into the 
classes in the ontology. Then we could use these data 
objects from the other tools to derive component-connection 
models and populate them with risk and counteraction data. 

3. MODELS FROM FUNCTIONAL REQUIREMENTS  

We present a systematic method for transforming functional 
requirements into function models and risk data into 
problem and countermeasure data in HIT model subsystems 
or components.  

1. Acquire text from requirements tools and risk 
tools. 

2. Reconcile selected requirements text concerning 
subsystems and their shift (send/receive/transfer) 
or serve (provide-to/require-from) functions with 
function and entity classes and attributes in the 
HIT ontology.  

3. Derive HIT component-connection model for 
system-of-subsystems from the requirements 
objects. 

4. Reconcile selected risk and mitigation text for the 
subsystems or components in the HIT model with 
problem and countermeasure function classes and 
attributes in the HIT ontology. 

5. Enhance default hazard, vulnerability and 
countermeasure data for HIT subsystems or 
components by adding data from risk objects. 

The nodes of functional decompositions such as the ISS 
RBDs and text from requirements specification tools such 
as SpecTRM [6] are imperative sentences (if the factual 
statement forms were amended to include “shall”).  
Examples include:  

• "Power the radar." 

• "Condition the cabin atmosphere." 

• “The CDHC shall receive a compressed picture file 
from the camera.” 

• “The CDHC shall send the Telecommunication 
Subsystem telemetry.”  

The Reconciler tool is used to parse the sentences and 
identify the function or service verb (e.g., send), the 
operand of the verb (e.g., telemetry) and the destination/user 
(e.g., Telecommunication Subsystem). Operands of 
functions (usually the grammatical objects) and their 
affected attributes are as important to capture as the services 
(the grammatical verbs). The functional agent or server that 
carries out the imperative can be identified if mentioned 
(e.g., CDHC). The agent, if unspecified, can be given a 
noun form of the verb (e.g., Power; Conditioner).  

The resulting simple semantic models fill in available 
attributes in classes in the ontology and can be used to 
create a system model made up of instances of the identified 
subsystems, transmitted entities and transmission paths or 
connections.  For systems where operands of functions 
move among subsystems (e.g. assembly lines, fluid flow, 
data transmission), these models can be transformed into 
functional architectures. Figure 1 shows requirements text, 
its transformation into a Requirements (function) model 
instance, and the derived functional architecture. 
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Figure 1 - Transforming requirement to element of model 

The types and attributes in the HIT ontology of 
functions, entities and problems provide the structure for 
deriving functional models.  For example, a Shift type of 
function provides a structure for matching to agent, 
operand, source, destination and path type, as well as other 
attributes. The Shift type of function is a subtype of Place, 
and its sibling types under Place are Hold and Arrange. 
Shift subtypes include Send/Release, Receive, Shift-in-
place and Transfer. 

The same parsing and matching strategy can be used with 
text from risk tools such as DDP [7]. This has included use 
of the hierarchical outline structure of the risk and 
mitigation data to infer application of risk words up and 
down the risk hierarchy. The Reconciler also extracts and 
provides the link data between objectives, risks and 
mitigations. The imported risk data can be used to enhance 
default hazards and vulnerabilities from the libraries of 
types of functions and operands.  Figure 2 shows risk and 
mitigation text and its transformation into problem and 
countermeasure structures for use in the model. The 
problem structure in Figure 2 uses a Function Problem type 
from the problem ontology. The counteraction model is 
based on a Replace type of function, which is a subtype of 
Recover, which is a subtype of Counteract/preserve. The 
sibling types of Replace under Recover are Restore and 
Undo. 

 

Figure 2 – Transforming risk and mitigation for the model 

This approach provides an automated way to build and 
expand functional and risk models. It enhances HIT support 
for manual model building and risk capture by engineers. 
The HIT combination of functional architecture and 
embedded risk data also enables application of graph 
analysis and abstract high-level behavior simulation to 
identify and investigate the effects of problems and 
countermeasures in scenarios. 

4. EXAMPLE CASE 

These capabilities are designed to support the following 
type of scenario. In this scenario, the tools help the 
designers collect and integrate data, build models and 
explore their implications. 

• Science spacecraft functional design by specialist 
teams: Telecommunication, Power, Thermal Control, 
Attitude Determination, Command and Data Handling… 

• HIT system architecture models integrate information 
from teams and HIT libraries. As versions are developed 
and elaborated, more subsystems and risk 
countermeasures are included.  

• HIT analysis of threats, vulnerabilities and paths in the 
system of subsystems finds new potential hazard 
interactions that countermeasures do not handle. 

• CONFIG abstract hybrid simulation details the events 
the potential mishaps. 

• Teams make design change: Enhance countermeasure 
strategy to handle the discovered interactions. 

• Information feeds back to risk and requirements tools. 

The case that illustrates our approach is a generic spacecraft 
that collects science data and transmits it to ground. 
Redundancy management for transmission is the risk 
mitigation that is the focus of this case. Autonomous fault 
management has become an important concern in satellite 
and spacecraft design [8]. 

We used requirements that had been independently 
developed in the SpecTRM specification tool, which 
focuses on software and transmission of commands and 
data. We parsed and transformed the requirements with 
Reconciler and derived an architecture model of the 
spacecraft subsystems described in the requirements. Figure 
3 shows example requirements and the derived model. The 
Command and Data Handling Computer (CDHC) is the 
conceptual center of this model. 
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Figure 3 – SpecTRM Command and Data Handling Requirements (L) are Used to Derive Initial HIT Spacecraft Model (R)

Imported risk data (see Figure 2) indicates that the risk of 
transmitter failure can be ameliorated by using redundant 
transmitters in the design. A telecommunication designer 
alters the model to focus on data transmission and the 
redundancy strategy. The problem is elaborated to indicate 
that the transmission failure can be activated by noise 
generated by the failed transmitter. The controller design is 
elaborated to respond to degraded data rate due to noise. 
The engineer adds two types of memory and ground station 
and associated connections. Some Power and Thermal 
information becomes available and is incorporated in the 
model. New types of power and heat connections are added. 
The Thermal Control System model includes a hazard. It is 
a source of electrical noise when on. The noise can be 
carried by Power connections to Telecommunication 
System transmitters. Figure 4 shows the state of the 
architecture model at this point in design. 

Then the engineer requests a static reachability analysis of 
system interactions, to evaluate potential risks. The static 
analysis first finds pairs of hazard sources and 
corresponding functions or components that are vulnerable 
to that hazard. Then the graph of the architecture model is 
searched (in paths that could transmit the hazard), to find a 
way that the hazard could reach the vulnerable entity.  

 

A simplified version of the primary reachability rule is: 

IF Component C1 is vulnerable to Entities of type E  

  AND Component C2 is a source of and Entities of type E 

  AND both C1 and C2 connect to paths of type P that can 
carry Entities of type E   

  AND there is a path P1 by which entities of type E can 
reach C1 from C2    

THEN a potential hazard exists 

Figure 5 shows the results of the analysis of the spacecraft 
model in Figure 4. It shows that external noise that can get 
to the transmitters over power connections. Transmitter 
redundancy would be an ineffective countermeasure for this 
threat.  

This information can also be used to develop a simulation 
script for the abstract spacecraft model, to explore risk 
interactions in operations and evaluate countermeasure 
strategies. A CONFIG simulation model is automatically 
derived from the HIT spacecraft model. The common 
generic model types in HIT and CONFIG enable this 
transformation. Figure 6 shows the derived simulation 
model. 
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Figure 4 – Revised Spacecraft Model Architecture 

The transmitters in the simulation are modeled as Servers in 
an abstract client/server model. These servers react to 
overload (more than 1.0 normalized capacity) by slowing 
the service rate (bandwidth). The Clients are science and 
engineering memory, each requesting transmission rates of 
0.4, with total load of 0.8, within the Server capacity limit. 
Noise from the Thermal Control System can take up 0.3 of 
normalized server capacity. 

 

Figure 5 – Results of Spacecraft Reachability Analysis 

 

Figure 6 – CONFIG Simulation Model of Spacecraft 

In the simulation script, the system is powered up and the 
Comm-Controller software state set to ON, starting data 
transmission. Then Thermal System set to ON, generating 
noise. 

The event sequence in the simulation is summarized below. 
1. Nominal Xmitter1 transmission rate is 0.8, the total 
requested rate.  

2. When TCS is turned ON, noise travels from TCS to 
Xmitters via power connections and takes up 0.3 of 
capacity. 

3. Xmitter 1 is overloaded (total 1.1 “requested”), changing 
transmitter data rate proportionally to 0.8/1.1 = 0.723 (too 
slow).  

4. Control software unsuccessfully tries to compensate by 
switching to backup Xmitter2, but transmission rate is 
unchanged. 

5. Failure: Transmission is not completed in specified time.  

The engineer updates the noise countermeasure to inhibit 
operation of the Thermal Control System during 
transmission. An example abstract control model with a new 
inhibit mode is shown in Figure 7. Simulation can be used 
again to evaluate this change.  

This new information can be fed back into the risks and 
requirements tools via a tool integration framework. 
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Figure 7 – Control model with mode for external noise 

6. CONCLUSIONS AND RECOMMENDATIONS 

We have presented methods for transforming and 
integrating requirements and risk data so that it can be used 
in model-based analysis and simulation to explore system 
interactions and evaluate mitigations. This will be important 
for connecting a variety of tools that use different methods 
for capturing system and software functions, architectures 
and risks. We have shown how to use lightweight 
simulation of operations in early analysis, to explore system 
effects on risks and performance problems and impacts of 
these problems on the system and subsystems. There is 
much more to be done in this area. With these types of 
analysis, consideration of system health management needs 
can be an integral part of early design.  

Currently, our requirements transformations focus on 
information about functional architecture. The methods, 
ontology and model library can be expanded to transform 
and include more types of requirements data in the future. 
The Reconciler approach should also make it possible to 
incorporate data from failure modes, effects and criticality 
analysis (FMECA) and software safety analysis [9] into the 
models. 

Lightweight simulation of system effects in operations, in 
the context of functional hierarchies, should be applicable to 
automating generation of event trees and fault trees. We 
hope to further explore using the lightweight simulation 
approach to help the developers of event trees and failure 
effects analysis [10]. 

While exploring the spacecraft case, we discovered an 
interesting ambiguity used by designers when considering 
function, implementation, operation and behavior. We think 
our tools can benefit from permitting this ambiguity, and we 
have begun experimenting with providing linked functions, 
operating modes and implementing agents. 

In the future, sub-functions could be identified that are 
services that prepare (and repair) participants in the 
function: functional agent, operand, environment and 
resources (supplies, energy, control). For example, the 
Power agent (subsystem) may need services to supply it 
with power, store the power and control the distribution. 
The destination, the Radar, may need to be enabled to 
receive power and cooled while powered.  

In the future, we also want to further explore the interactive 
use of generic risk and countermeasure information that can 
be associated with entities in the HIT model library.  
Defaults can be used to aid and automate the process of 
enumerating and discovering hazards, vulnerabilities and 
countermeasures for types of subsystems, components and 
agents (human and software). 
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